选择和使用高精度数模转换器

很多应用 (包括精密仪器、工业自动化、医疗设备和自动测试设备) 都需要高准确度数模转换。在 16 位分辨率时要求准确度好于约 ±15ppm 或 ±1LSB 的电路中,设计师传统上一直使用大量校准,以在所有情况下保持准确度。新型高精度 使得能够采用一个单片式 DAC 来实现 ±4ppm 准确度或 ±1LSB (在 18 位分辨率条件下),而无需校准。在本文中我们将对高精度 数模转换器的选择和使用过程中所涉及的问题进行研究。 DAC 的架构对于 DAC 的技术规格及其对电路板设计师的要求均有影响。为了实现最佳性能,需要谨慎地考虑 DAC 上的电源、基准和输出放大器所产生的影响。 过采样或增量累加 DAC 过采样或 ΔΣ ADC 采用一个低分辨率 DAC (通常仅 1 位),在其前后分别布设一个噪声整形数字调制器和一个模拟低通滤波器。最准确的商用增量累加 DAC 实现 ±15ppm 的准确度,但是需要 15ms 才能稳定,并要承受相对较高的 1μV/√Hz 噪声密度。可购得的过采样 DAC 在 80us 内稳定,但是 INL 较差,大约为 240 ppm。 合成 DAC 通过结合两个较低分辨率的单片 DAC,有可能构成一个高分辨率的合成 DAC。请注意,粗略 DAC 的分辨率和精细 DAC 的范围需要重叠,以确保所有想要的输出电压都可实现。粗略 DAC 的准确度和漂移一般将限制合成 DAC 的最终准确度,因此要提高准确度,就需要对合成 DAC 转移函数的特性和软件进行校正。也可能需要频率校准,以校正随温度、时间、湿度和机械压力产生的变化导致的漂移。 电阻串 DAC 电阻串 DAC 采用具有 2N 个分接点的一系列电阻分压器,以实现 N 位分辨率。采用电阻串架构的单片 16 位 DAC 一般含有一个较低分辨率的电阻串 DAC 和一个范围较小的 DAC,范围较小的 DAC 用于插入串器件之间,以实现 16 位分辨率。这种串+内插器方法的一个优点是,DAC 输出具有固有的单调性,无需微调或校准。 这类 DAC 的基准输入阻抗一般很高 (50KΩ~ 300kΩ),而且不受输入代码的影响,从而有可能使用一个非缓冲型基准。因为电阻串的输出阻抗随输入代码变化,所以大多数电阻串 DAC 含有集成的输出缓冲器放大器,以驱动电阻性负载。 尽管电阻串 DAC 的 DNL 本身非常好,但是 INL 由串联电阻器件的匹配决定,而且可能由于含有大量的独立器件而难以控制。直到最近,这类 DAC 的准确度一直限制在约 ±180ppm。最近的进步已经使得准确度提高到了 ±60ppm。例如,LTC2656 在 4mm x 5mm 封装中集成了 8 个 DAC 通道,在 16 位分辨率时具有 ±4LSB 的最大 INL。 阻性梯形或 R-2R 型 DAC 阻性梯形或 R-2R DAC 采用一种三端子结构,电阻器在 A 端和 B 端之间切换。请注意,A 端和 B 端上的阻抗与代码的相关性很高,而 C 端则具有一个固定阻抗。电阻器与开关的匹配情况将会影响这种结构的单调性和准确度。此类 DAC 一般经过修整或在出厂时经过校准,而且,具 ±1LSB INL 和 DNL 的单调 16 位阻性梯形电路 DAC 上市已有很长时间了。 电压输出 R-2R DAC 一种常见类型的 R-2R DAC 将C 端用作 DAC 输出电压,而 A 端连接到基准,B 端连接到地。输出阻抗相对于输入代码是恒定的,从而有可能以非缓冲方式驱动电阻负载。例如,LTC2641 16 位 DAC 能以非缓冲方式驱动 60kΩ 负载,同时保持 ±1LSB 的 INL 和 DNL,并消耗不到 200μA 的电源电流。 这种方法的一个缺点是,基准阻抗随着输入代码大幅变化。由于 R-2R 梯形电路的本质,甚至 DAC 输出电压中很小的变化也可能在基准电流中引起 1mA 或更大的阶跃变化。为此,必须由一个高性能放大器来对基准进行缓冲,并采用一种非常精细和针对性的检测电路布局,以限制稳定、干扰脉冲和线性度性能的最终劣化。 当一个输出缓冲器放大器和一个电压输出 R-2R DAC 一起使用时,该放大器的开环增益和大信号共模抑制必须足够高,以保持输出的线性度 (在 18 位时 >110dB)。输出缓冲器的失调和输入偏置电流将主要以 DAC 输出偏移的形式出现,但是这些参数在输入共模范围内的任何变化都将以附加的 INL 误差形式出现。 请注意,在正和负基准开关之间有必要保持匹配的阻抗,以保持 DAC 线性度。因为 CMOS 开关阻抗 是电压和温度的函数,因此这给 DAC 的准确度带来了挑战,尤其是在低电源电压时。可采用这种架构的 18 位 DAC 的 PSRR 被限制在约 64dB。结果,随着时间、温度、电压和负载状况的变化,电源必须在约 0.5% 的范围内保持恒定,以保持 18 位性能。在工作温度范围内,这类 DAC 的 INL 可以预期以 ±0.5LSB 或更大的幅度漂移。 迄今为止,当采用一个5V电源时,运用该架构和一个集成输出放大器的18位DAC的性能一直被限制为±2LSB INL(在18位)。采用3V电源时,其性能将进一步限制为±3LSB INL(在18位),且单调性下降至 17位。